
DETRDistill: DETR 계열을 위한 범용 Knowledge Distillation 프레임워크
DETRDistill은 Transformer 기반 detector (DETR) 계열을 위해 특별히 설계된 새로운 Knowledge Distillation (KD) 프레임워크입니다. 기존 KD 방법들이 DETR의 집합 예측 (set prediction) 방식에 적용하기 어려운 문제를 해결하기 위해, 이 논문은 세 가지 주요 구성 요소를 제안합니다: (1) Hungarian-matching logits distillation은 student 모델이 teacher 모델의 예측과 정확히 일치하도록 유도합니다. (2) Target-aware feature distillation은 student가 teacher의 객체 중심적 (object-centric) feature로부터 학습하도록 돕습니다. (3) Query-prior assignment distillation은 잘 학습된 teacher의 query와 안정적인 할당(assignment) 정보를 활용하여 student 모델의 수렴 속도를 높입니다. 이 프레임워크는 COCO 데이터셋에서 다양한 DETR 모델의 성능을 크게 향상시키며, 때로는 teacher 모델을 능가하는 결과를 보여줍니다. 논문 제목: DETRDistill: A Universal Knowledge Distillation Framework for DETR-families